Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions.

نویسندگان

  • S Li
  • N Kang
  • D X Fan
  • L B Wang
  • Y Q Huang
  • P Caroff
  • H Q Xu
چکیده

Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-Pérot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ballistic charge transport through bio-molecules in a dissipative environment.

The question whether dissipative bio-molecular systems can support efficient coherent (phase-conserving) charge transport is raised again following recent experiments on electron-energy transfer in bio-molecules. In this work we formulate conditions under which the current due to coherent ballistic resonant charge transport through DNA molecular junctions can be measured in spite of coupling to...

متن کامل

Phase-controlled force and magnetization oscillations in superconducting ballistic nanowires.

The emergence of superconductivity-induced phase-controlled forces in the (10(-2)-10(-1)) nN range and of magnetization oscillations in nanowire junctions is discussed. A giant magnetic response to applied weak magnetic fields is predicted in the ballistic Josephson junction formed by a superconducting tip and a surface, bridged by a normal-metal nanowire where Andreev states form.

متن کامل

Ballistic to Diffusive Crossover in III–V Nanowire Transistors

In this paper, we examine the crossover between 4 ballistic and diffusive transport in III–V nanowire transistors. 5 We find that at lower drain voltages the ballistic-to-diffusive 6 crossover occurs at channel lengths of approximately 2.3 nm at 7 room temperature. However, when we increase the drain voltage, 8 we find that the ballistic-to-diffusive crossover can be more than 9 nine times as l...

متن کامل

Observation of Conductance Quantization in InSb Nanowire Networks

Majorana zero modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offer a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in...

متن کامل

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016